Reproducible Polyglot Data
Science

Bruno Rodrigues

2025-12-31

Table of contents

Welcome! 1
A modern, unified, and language-agnostic workflow for
data science using Nix. 1
Preface 5
1 Introduction 9
1.1 Who is this book for? 9
1.2 What is the aim of this book? 10
1.3 Prerequisites 12
1.4 What actually is reproducibility? 14
1.4.1 Using open-source tools is a hard require-
ment 14
1.4.2 Hidden dependencies can hinder repro-
ducibilityo 17
1.4.3 The requirements of a RAP 18
1.4.4 Are there different types of reproducibility? 19
2 The Nix Package Manager 25
2.1 Introduction 25
2.2 Important Concepts 27
2.2.1 Derivations 28
2.2.2 Dependencies of derivations 29
2.2.3 The Nix store and hermetic builds 30
2.2.4 Other key Nix concepts 31

2.3 Caveabs 32

il

Table of contents

24 Insummary Lo 34
3 Setting up Nix and Positron 37
3.1 Imtroduction 37
3.2 Windows pre-requisites 38
3.3 Determinate Nix 40
3.4 Temporary shells 40
3.5 The rstats-on-nix Cache 42
3.6 direnv 43
3.7 Installing and configuring an editor 44
3.7.1 Positron and VS Code 44
372 Emacs 45

4 Reproducible Development Environments with rix 47

References 49

v

Welcomel!

A modern, unified, and
language-agnostic workflow for data
science using Nix.

This book is a complete reimagining of my previous work, “Build-
ing Reproducible Analytical Pipelines with R.” If you’re looking
for that book, you can find it here. But if you’re ready for the
next step, you’re in the right place.

Data scientists, statisticians, analysts, researchers, and many
other professionals write a lot of code.

Not only do they write a lot of code, but they must also read
and review a lot of code as well. They either work in teams and
need to review each other’s code, or need to be able to repro-
duce results from past projects, be it for peer review or auditing
purposes. And yet, they never, or very rarely, get taught the
tools and techniques that would make the process of writing,
collaborating, reviewing and reproducing projects possible.

Which is truly unfortunate because software engineers face the
same challenges and solved them decades ago.

The aim of this book is to teach you how to use some of the best
practices from software engineering and DevOps to make your

https://www.raps-with-r.dev

Welcome!

projects robust, reliable and reproducible. It doesn’t matter if
you work alone, in a small or in a big team. It doesn’t matter
if your work gets (peer-)reviewed or audited: the techniques
presented in this book will make your projects more reliable
and save you a lot of frustration!

As someone whose primary job is analysing data, you might
think that you are not a developer. It seems as if developers are
these genius types that write extremely high-quality code and
create these super useful packages. The truth is that you are a
developer as well. It’s just that your focus is on writing code
for your purposes to get your analyses going instead of writing
code for others. Or at least, that’s what you think. Because in
others, your team-mates are included. Reviewers and auditors
are included. Any people that will read your code are included,
and there will be people that will read your code. At the very
least future you will read your code. By learning how to set up
projects and write code in a way that future you will understand
and not want to murder you, you will actually work towards
improving the quality of your work, naturally.

The book can be read for free on https://b-rodrigues.github.io/
reproducible-data-science/ and you’ll be able buy a DRM-free
Epub or PDF on Leanpub! once there’s more content.

This book is the culmination of my previous works. I started
by writing a book focused on R, and then began working on a
Python edition. During that process, I had a realization: tack-
ling reproducibility one language at a time was solving the symp-
toms, not the root cause. The real solution needed to be univer-
sal, powerful, and capable of handling any language or tool we
might need.

That universal solution is Nix.

thttps://leanpub.com/

https://b-rodrigues.github.io/reproducible-data-science/
https://b-rodrigues.github.io/reproducible-data-science/
https://leanpub.com/

A modern, unified, and language-agnostic workflow for data science using |

This book moves beyond language-specific tooling. It presents
a holistic workflow where R, Python, and Julia are not com-
petitors, but collaborators in a single, cohesive, and perfectly
reproducible environment. We will cover:

e The Nix Philosophy: Why Nix is the ultimate tool for
solving the “it works on my machine” problem, once and
for all.

e Declarative Environments with {rix}: How to use a sim-
ple R interface to define exact, bit-for-bit reproducible
software environments that include specific versions of R,
Python, Julia, their packages, and any system-level depen-
dencies.

« Polyglot Pipelines with {rixpress} (R) or ryxpress
(Python): How to orchestrate complex analytical pipelines
that seamlessly pass data between different languages, all
managed by the Nix build system.

o Unit Testing and Functional Programming: Core princi-
ples for writing robust, testable, and maintainable code,
no matter the language.

o Distribution and Automation: How to package your en-
tire reproducible pipeline into a Docker container for easy
sharing and automate your workflow with GitHub Actions.

While this is not a book for beginners (you should be famil-
iar with at least one data-centric programming language before
reading this), I will not assume that you have any knowledge of
the tools discussed. But be warned, this book will require you
to take the time to read it, and then type on your computer.
Type a lot.

I hope that you will enjoy reading this book and applying the
ideas in your day-to-day, ideas which hopefully should improve
the reliability, traceability and reproducibility of your code.

Welcome!

If you find this book useful, don’t hesitate to let me know! You
can submit issues, suggest improvements, and ask questions on
the book’s Github repository.

If you want to get to know me better, read my bio?.

Zhttps://www.brodrigues.co/about/me/

https://github.com/b-rodrigues/reproducible-data-science
https://www.brodrigues.co/about/me/

Preface

Three years ago, I wrote a book with a straightforward premise:
by borrowing a few key ideas from software engineering, people
who analyse data could save themselves a great deal of frustra-
tion. The response to that book was more positive than I could
have ever hoped for, and it confirmed a suspicion I had: we, as
a community, are hungry for better ways to work.

That book, however, focused exclusively on the R ecosystem. A
recurring question I received was, “This is great, but what about
Python?” It was a fair question. The world of data science is not
a monologue; it’s a conversation between languages. So, I began
what felt like the logical next step: writing a Python edition.

I mapped out the chapters and identified the equivalent tools,
pipenv for dependency management, ploomber for pipelines,
and started writing. But as I went deeper, a nagging feeling
grew. | was solving the same problems all over again, just with a
different set of tools. This feeling was compounded by the rapid
churn within the Python ecosystem itself. How many package
managers have been created to solve virtual environment man-
agement? As of writing, uv is all the rage, and while it may
be here to stay, history suggests a new contender is always just
around the corner.

This pointed to a larger issue. I am convinced that the future
of data science is polyglot. An R user and a Python user, both
following my original advice, would end up with reproducible

Preface

projects, but their workflows would be fundamentally incompat-
ible. They couldn’t easily share an environment or build a single
pipeline that leverages the strengths of both languages. While
companies like Posit have made excellent progress in making it
easier to call Python from R, setting up a truly integrated de-
velopment environment remains a challenge. And what if you
wish to bring Julia, the other language of data analysis, into the
fold? It is not as popular as Python or R, but it has its own
distinct appeal and advantages.

I realised I was treating the symptoms, not the disease. The
root problem wasn’t “How do I make R reproducible?” or “How
do I make Python reproducible?”. The real challenge was the
lack of a universal foundation that could handle any language,
any tool, and any system dependency with absolute, bit-for-bit
precision.

That’s when I stopped writing the Python book.

The solution wasn’t to create another language-specific guide
but to find a tool that operated at a more fundamental level.
That tool, I am now convinced, is Nix.

Nix is not just another package manager; it is a powerful, declar-
ative system for building and managing software environments.
It allows us to define the entire computational environment—
from the operating system libraries up to the specific versions of
our R and Python packages—in a single, simple text file. When
you use Nix, the phrase “it works on my machine” becomes ob-
solete. It is replaced by the guarantee: “it builds identically,
everywhere, every time”—with a few caveats that we will ex-
plore, of course.

This book is the result of that realisation. It is a complete
reimagining of the original. We are moving away from language-
specific patchworks and toward a unified, polyglot workflow. We

Preface

will use Nix as our bedrock, with the {rix} and {rixpress} R
packages (or ryxpress for Python) serving as our friendly in-
terface to its power. You will learn to build pipelines where
R, Python, and Julia aren’t just neighbours; they are collabo-
rators, working together in a single, perfectly reproducible envi-
ronment.

A note for Python-first users: do not be deterred by the fact
that {rix} and {rixpress} are R packages: there is a Python
version called ryxpress that will allow you to run your pipelines
from an interactive Python session. You will be able to use them
to define your environments (even integrating tools like uv) and
orchestrate your pipelines, while doing all of your analytical work
exclusively in Python. In this workflow, R simply becomes a
convenient configuration language.

The core message from three years ago remains unchanged. You,
as someone who writes code to analyse data, are a developer.
Your work is important, and it deserves to be reliable. This
book aims to give you the tools and the mindset to achieve that.
The journey is more ambitious this time, but the payoff is far
greater.

I hope you’ll join me.

You can read this book for free online at https://b-rodrigues.
github.io/reproducible-data-science/.

You can submit issues, suggest improvements, and ask questions
on the book’s Github repository.

https://b-rodrigues.github.io/reproducible-data-science/
https://b-rodrigues.github.io/reproducible-data-science/
https://github.com/b-rodrigues/reproducible-data-science

1 Introduction

Just like the previous, R-focused edition of this book, this one
will not teach you about machine learning, statistics, or visuali-
sation.

The goal is to teach you a set of tools, practices, and project
management techniques that should make your projects easier to
reproduce, replicate, and retrace, with a focus on polyglot (mul-
tilingual) projects. I believe that with LLMs, polyglot projects
will become increasingly common.

Before LLMs, if you were a Python user, you would avoid R
like the plague, and vice versa. This is understandable: even
though both are high-level scripting languages, and an R user
could likely read and understand Python code (and vice versa),
it is still a pain in the loins to set up another language just
to run a few lines of code. Now, with LLMs, you can have a
model generate the code, and depending on what you're doing,
it’s likely to be correct. However, setting up another language
is still quite annoying. This is where Nix comes in. Nix makes
adding another language to a project extremely simple.

1.1 Who is this book for?

This book is for anyone who uses raw data to build any type
of output. This could be a simple quarterly report, in which

1 Introduction

data is used for tables and graphs, a scientific article for a peer-
reviewed journal, or even an interactive web application. The
specific output doesn’t matter, because the process is, at its core,
always very similar:

o Get the data;

o Clean the data;

o Write code to analyse the data;

o Put the results into the final product.

This book assumes some familiarity with programming, particu-
larly with the R and Python languages. I will not discuss Julia
in great detail, as I am not familiar enough with it to do it jus-
tice. That being said, I will show you how to add Julia to a
project and use it effectively if you need to.

1.2 What is the aim of this book?

The aim of this book is to make the process of analysing data as
reliable, retraceable, and reproducible as possible, and to do this
by design. This means that once you’re done with the analysis,
you're done. You don’t want to spend time, which you often
don’t have anyway, to rewrite or refactor an analysis to make it
reproducible after the fact. We both know this is not going to
happen. Once an analysis is finished, it’s on to the next one. If
you need to rerun an older analysis (for example, because the
data has been updated), you'll simply figure it out at that point,
right? That’s a problem for Future You. Hopefully, Future You
will remember every quirk of your code, know which script to
run at which point, which comments are outdated, and what
features of the data need to be checked.. You had better hope
Future You is a more diligent worker than you are!

10

1.2 What is the aim of this book?

Going forward, I'm going to refer to a project that is repro-
ducible as a “Reproducible Analytical Pipeline”, or RAP for
short. There are only two ways to create a RAP: either you
are lucky enough to have someone on your team whose job is to
turn your messy code into a RAP, or you do it yourself. The
second option is by far the most common. The issue, as stated
above, is that most of us simply don’t do it. We are always in
a rush to get to the results and don’t think about making the
process reproducible, because we assume it takes extra time that
is better spent on the analysis itself. This is a misconception,
for two reasons.

The first is that employing the techniques we will discuss in this
book won’t actually take much time. As you will see, they are
not things you “add on top of” the analysis, but are part of the
analysis itself, and they will also help with managing the project.
Some of these techniques, especially testing, will even save you
time and headaches.

The second reason is that an analysis is never a one-shot. Only
the simplest tasks, like pulling a single number from a database,
might be. Even then, chances are that once you provide that
number, you'll be asked for a variation of it (for example, dis-
aggregated by one or several variables). Or perhaps you'll be
asked for an update in six months. You will quickly learn to
keep that SQL query in a script somewhere to ensure consis-
tency. But what about more complex analyses? Is keeping the
script enough? It is a good start, of course, but very often,
there is no single script, or a script for each step of the analysis
is missing.

I've seen this play out many times in many different organisa-

tions. It’s that time of the year again, and a report needs to be
written. Ten people are involved, and just gathering the data

11

1 Introduction

is already complicated. Some get their data from Word docu-
ments attached to emails, some from a website, some from a
PDF report from another department. I remember a story a se-
nior manager at my previous job used to tell: once, a client put
out a call for a project that involved setting up a PDF scraper.
They periodically needed data from another department that
only came in PDFs. The manager asked what was, at least from
our perspective, an obvious question: “Why can’t they send you
the underlying data in a machine-readable format?” They had
never thought to ask. So, my manager went to that department
and talked to the people putting the PDF together. Their an-
swer? “Well, we could send them the data in any format they
want, but they’ve asked for the tables in a PDF.”

So the first, and probably most important, lesson here is: when
starting to build a RAP, make sure you talk with all the people
involved.

1.3 Prerequisites

You should be comfortable with the command line. This book
will not assume any particular Integrated Development Environ-
ment (IDE), so most of what I'll show you will be done via the
command line. That said, I will spend some time helping you
set up a data science-focused IDE, Positron, to work seamlessly
with this workflow. The command line may be over 50 years
old, but it is not going anywhere. In fact, thanks to the rise of
LLMs, it seems to be enjoying a resurgence. Since these models
generate text, it is far simpler to ask one for a shell command to
solve a problem than to have it produce detailed instructions on
where to click in a graphical user interface (GUI). Knowing your
way around the command line is also essential for working with

12

1.3 Prerequisites

modern data science infrastructure: continuous integration plat-
forms, Docker, remote servers... they all live in the terminal. So,
if you're not at all familiar with the command line, you might
need to brush up on the basics. Don’t worry, though; this isn’t
a book about the intricacies of the Unix command line. The
commands I'll show you will be straightforward and directly ap-
plicable to the task at hand.

This means however that if you are using Windows, first of all,
why? and second of all, you will have to set up Windows Subsys-
tem for Linux. This is because there is no native Nix implemen-
tation for Windows, and so we need to run the Linux version
through WSL. Don’t worry though, it’s not that hard, and you
can then use an IDE from Windows to work with the environ-
ments managed by Nix, in a very seamless way (but seriously,
consider, if you can, switching to Linux. How can you tolerate
ads (ADS!) in the start menu).

Ideally, you should be comfortable with either R or Python. This
book will assume that you have been using at least one of these
languages for some projects and want to improve how you man-
age complex projects. You should know about packages and
how to install them, have written some functions, understand
loops, and have a basic knowledge of data structures like lists.
While this is not a book on visualisation, we will be making
some graphs as well.

Our aim is to write code that can be executed non-interactively.
This is because a necessary condition for a workflow to be repro-
ducible and to qualify as a RAP is for it to be executed by a
machine, automatically, without any human intervention. This
is the second lesson of building RAPs: there should be no hu-
man intervention needed to get the outputs once the RAP has
started. If you achieve this, then your workflow is likely repro-
ducible, or can at least be made so much more easily than if

13

1 Introduction

it requires special manipulation by a human somewhere in the
loop.

1.4 What actually is reproducibility?

A reproducible project means that it can be rerun by anyone
at zero (or very minimal) cost. But there are different levels of
reproducibility, which I will discuss in the next section. Let’s
first outline the requirements that a project must meet to be
considered a RAP.

1.4.1 Using open-source tools is a hard
requirement

Open source is a hard requirement for reproducibility. No ifs,
ands, or buts. I'm not just talking about the code you wrote
for your research paper or report; I'm talking about the entire
ecosystem you used to write your code and build the workflow.

Is your code open? Good. Or is it at least available to others
in your organisation, in a way that they could re-execute it if
needed? Also good.

But is it code written in a proprietary program, like STATA,
SAS, or MATLAB? Then your project is not reproducible. It
doesn’t matter if the code is well-documented, well-written, and

available on a version control system. The project is simply not
reproducible. Why?

Because on a long enough time horizon, there is no way to re-
execute your code with the exact same version of the proprietary
language and operating system that were used when the project

14

1.4 What actually is reproducibility?

was developed. As I'm writing these lines, MATLAB, for ex-
ample, is at version R2025a. Buying an older version may not
be simple. I'm sure if you contact their sales department, they
might be able to sell you an older version. Maybe you can even
re-download older versions you’ve already purchased from their
website. But maybe it’s not that straightforward. Or maybe
they won’t offer this option in the future. In any case, if you
search for “purchase old version of Matlab,” you will see that
many researchers and engineers have this need. ::: {.content-
hidden when-format="“pdf”}

Wanting to run older versions of analytics software is a recurrent
need.

15

1 Introduction

Old version of matlab

4 views (last 30 days)

[Jon29Nov201s 1 @ Link

Hallo after a few years we need to use again an old program written with matlab R12 6.0.0.88. We don't find the installation CD,
can we buy again this old version of the program? Thanks best regard

§3 0 Comments

Sign in to comment.

Sign in to answer this question.

&' Answers (1)

. 123 [on 29 Nov 2018 0 & Link

Have you tried running the old program on a more recent release of MATLAB?

MATLAB 6.0 (R12) is eighteen years old (released in November 2000) and | think it highly unlikely you'll be able to get
it working on a new operating system. The Windows system requirements lists several Windows versions on which that
release was supported, the newest of which was Windows ME which was released in September 2000. Microsoft
ended mainstream support for this OS in 2003 and ended extended support in July 2006 according to Wikipedia.

B3 0 Comments

Sign in to comment.

Figure 1.1: Wanting to run older versions of analytics software
is a recurrent need.

And if you’re running old code written for version, say, R2008a,
there’s no guarantee that it will produce the exact same re-
sults on version R2025a. That’s without even mentioning the
toolboxes (if you're not familiar with them, they’re MATLAB’s
equivalent of packages or libraries). These evolve as well, and
there’s no guarantee that you can purchase older versions. It’s
also likely that newer toolboxes cannot even run on older ver-
sions of MATLAB.

Let me be clear: what I'm describing here for MATLAB could
also be said for any other proprietary programs still commonly
(and unfortunately) used in research and statistics, like STATA,

16

1.4 What actually is reproducibility?

SAS, or SPSS. Even if some of these vendors provide ways to
run older versions of their software, the fact that you have to
rely on them for this is a barrier to reproducibility. There is
no guarantee they will provide this option forever. Who can
guarantee that these companies will even be around forever?
More likely, they might shift from a program you install on your
machine to a subscription-based model.

For just 199€ a month, you can execute your SAS (or what-
ever) scripts on the cloud! Worried about data confidentiality?
No problem, data is encrypted and stored safely on our secure
servers! Run your analysis from anywhere and don’t worry about
your cat knocking coffee over your laptop! And if you purchase
the pro licence, for an additional 100€ a month, you can even
execute your code in parallel!

Think this is science fiction? There is a growing and concerning
trend for vendors to move to a Software-as-a-Service model with
monthly subscriptions. It happened to Adobe’s design software,
and the primary reason it hasn’t yet happened for data analytics
tools is data privacy concerns. Once those are deemed “solved,”
I would not be surprised to see a similar shift.

1.4.2 Hidden dependencies can hinder
reproducibility

Then there’s another problem. Let’s suppose you've written a
thoroughly tested and documented workflow and made it avail-
able on GitHub (and let’s even assume the data is freely available
and the paper is open access). Or, if you're in the private sector,
you’ve done all of the above, but the workflow is only available
internally.

17

1 Introduction

Let’s further assume that you’ve used R, Python, or another
open-source language. Can this analysis be said to be repro-
ducible? Well, if it ran on a proprietary operating system, then
the conclusion is: your project is not fully reproducible.

This is because the operating system the code runs on can also
influence the outputs. There are particularities in operating sys-
tems that may cause certain things to work differently. Admit-
tedly, this is rarely a problem in practice, but it does happen!,
especially if you're working with high-precision floating-point
arithmetic, as you might in the financial sector, for instance.

Thankfully, as you will see in this book, there is no need to
change your operating system to deal with this issue.

1.4.3 The requirements of a RAP

So where does that leave us? For a project to be truly repro-
ducible, it has to respect the following points:

e Source code must be available and thoroughly tested
and documented (which is why we will be using Git and
GitHub).

« All dependencies must be easy to find and install (we will
deal with this using dependency management tools).

o It must be written in an open-source programming lan-
guage (no-code tools like Excel are non-reproducible by
default because they can’t be used non-interactively, which
is why we will be using languages like R, Python, and Ju-
lia).

Thttps://github.com /numpy /numpy /issues /9187

18

https://github.com/numpy/numpy/issues/9187

1.4 What actually is reproducibility?

e The project needs to run on an open-source operating sys-
tem (we can deal with this without having to install and
learn a new OS, thanks to tools like Docker).

o The data and the final report must be accessible—if not
publicly, then at least within your company. This means
the concept of “scripts and/or data available upon request”
belongs in the bin.

Availability of da

Data available upon reasonable re

Figure 1.2: A real sentence from a real paper published in THE
LANCET Regional Health. How about make the data
available and I won’t scratch your car, how’s that for
a reasonable request?

1.4.4 Are there different types of reproducibility?

Let’s take one step back. We live in the real world, where con-
straints outside of our control can make it impossible to build
a true RAP. Sometimes we need to settle for something that
might not be perfect, but is the next best thing.

In what follows, let’s assume the code is tested and documented,
so we will only discuss the pipeline’s execution.

The least reproducible pipeline would be something that works,
but only on your machine. This could be due to hardcoded paths

19

1 Introduction

that only exist on your laptop. Anyone wanting to rerun the
pipeline would need to change them. This should be documented
in a README, which we’ve assumed is the case. But perhaps
the pipeline only runs on your laptop because the computational
environment is hard to reproduce. Maybe you use software, even
open-source software, that is not easy to install (anyone who has
tried to install R packages on Linux that depend on {rJava}
knows what I'm talking about).

A Dbetter, though still imperfect, pipeline would be one that
could be run more easily on any similar machine. This could be
achieved by avoiding hardcoded absolute paths and by providing
instructions to set up the environment. For example, in Python,
this could be as simple as providing a requirements.txt file
that lists the project’s dependencies, which could be installed

using pip:

pip install -r requirements.txt
Doing this helps others (or Future You) install the required pack-
ages. However, this is not enough, as other software on your

system, outside of what pip manages, can still impact the re-
sults.

20

1.4 What actually is reproducibility?

You should also ensure that people run the same analysis on the
same versions of R or Python that were used to create it. Just
installing the right packages is not enough. The same code can
produce different results on different versions of a language, or
not run at all. If you've been using Python for some time, you
certainly remember the switch from Python 2 to Python 3. Who
knows, the switch to Python 4 might be just as painful!

The take-away message is that relying on the language itself
being stable over time is not a sufficient condition for repro-
ducibility. We have to set up our code in a way that is explic-
itly reproducible by dealing with the versions of the language
itself.

So what does this all mean? It means that reproducibility exists
on a continuum. Depending on the constraints you face, your
project can be “not very reproducible” or “totally reproducible”.
Let’s consider the following list of factors that can influence how
reproducible your project truly is:

» Version of the programming language used.

« Versions of the packages/libraries of said programming lan-
guage.

o The operating system and its version.

« Versions of the underlying system libraries (which often go
hand-in-hand with the OS version, but not always).

o And even the hardware architecture that you run the soft-
ware stack on.

By “reproducibility is on a continuum,” I mean that you can set
up your project to take none, one, two, three, four, or all of the
preceding items into consideration.

This is not a novel, or new idea. Peng (2011) already discussed
this concept but named it the reproducibility spectrum:

21

1 Introduction

Reproducibility Spectrum
Publication +

Publication)
only Code Linked and

Code andie executable
code and data

Not reproducible

Figure 1.3: The reproducibility spectrum from Peng’s 2011 pa-
per.

Let me finish this introduction by discussing the last item on
the list: hardware architecture. In 2020, Apple changed the
hardware architecture of their computers. Their new machines
no longer use Intel CPUs, but instead Apple’s own proprietary
architecture (Apple Silicon) based on the ARM specification.
Concretely, this means that binary packages built for Intel-based
Apple computers cannot run on their new machines, at least not
without a compatibility layer. If you have a recent Apple Silicon
Mac and need to install old packages to rerun a project (and we
will learn how to do this), they need to be compiled to work on
Apple Silicon first. While a compatibility layer called Rosetta
2 exists, my point is that you never know what might come in
the future. The ability to compile from source is important be-
cause it requires the fewest dependencies outside of your control.
Relying on pre-compiled binaries is not future-proof, which is an-
other reason why open-source tools are a hard requirement for
reproducibility.

For you Windows users, don’t think that the preceding para-
graph does not concern you. It is very likely that Microsoft will

22

Full
replicat

Gold stanc

1.4 What actually is reproducibility?

push for OEM manufacturers to build more ARM-based com-
puters in the future. There is already an ARM version of Win-
dows, and I believe Microsoft will continue to support it. This
is because ARM is much more energy-efficient than other archi-
tectures, and any manufacturer can build its own ARM CPUs
by purchasing a license—a very interesting proposition from a
business perspective.

It is also possible that we will move towards more cloud-based
computing, though I think this is less likely than the hardware
shift. In that case, it is quite likely that the actual code will be
running on Linux servers that are ARM-based, due to energy
and licensing costs. Here again, if you want to run your histori-
cal code, you'll have to compile old packages and programming
language versions from source.

Ok, this might all seem incredibly complicated. How on earth
are we supposed to manage all these risks and balance the im-
mediate need for results with the future need to rerun an old
project? And what if rerunning it is never needed?

As you shall see, this is not as difficult as it sounds, thanks to
Nix and the tireless efforts of the nixpkgs maintainers who work
to build truly reproducible packages.

Let’s dive in!

23

2 The Nix Package
Manager

2.1 Introduction

Nix is a package manager that can be installed on your computer,
regardless of the operating system. If you are familiar with
the Ubuntu Linux distribution, you have likely used apt-get to
install software. On macOS, you may have used homebrew for
similar purposes. Nix functions in a comparable way but has
many advantages over classic package managers, as it focuses
on reproducible builds and downloads packages from nixpkgs,
currently the largest software repository!.

What makes Nix particularly useful for reproducible projects?
Why not use another package manager? Wouldn’t we achieve
the same thing?

To answer that, let’s start from the beginning. To ensure a
project is reproducible, you need to deal with at least four chal-
lenges:

o Ensure the required version of your programming language
(R, Python, etc.) is installed.
o Ensure the required versions of all packages are installed.

Thttps:/ /repology.org/repositories/graphs

25

https://repology.org/repositories/graphs

2 The Nix Package Manager

 Ensure all necessary system dependencies are installed (for
example, a working Java installation for the {rJava} R
package on Linux).

« Ensure you can install all of this on the hardware you have
on hand.

The current consensus for tackling the first three points is of-
ten a mixture of tools: Docker for system dependencies, {renv}
or uv for package management, and tools like the R installation
manager (rig) for language versions. As for the last point, hard-
ware architecture, the only way out is to be able to compile the
software for the target platform. This involves a lot of moving
parts and requires significant knowledge to get right.

With Nix, we can handle all of these challenges with a single
tool.

The first advantage of Nix is that its repository, nixpkgs, is
humongous. As of this writing, it contains over 120,000 pieces
of software, including the entirety of CRAN and Bioconductor.
This means you can use Nix to handle everything: R, Python,
Julia, their respective packages, and any other software avail-
able through nixpkgs, making it particularly useful for polyglot
pipelines.

The second, and most crucial, advantage is that Nix allows you
to install software in (relatively) isolated environments. When
you start a new project, you can use Nix to install a project-
specific version of R and all its packages. These dependencies
are used only for that project. If you switch to another project,
you switch to a different, independent environment. But this
also means that all the dependencies of R and R packages, plus
all of their dependencies and so on get installed as well. Your
project’s development environment will not depend on anything
outside of it.

26

2.2 Important Concepts

This is similar to {renv}, but the difference is profound: you
get not only a project-specific library of R packages but also a
project-specific R version and all the necessary system depen-
dencies. For example, if you need {x1sx}, Nix automatically
figures out that Java is required and installs and configures it
for you, without any intervention.

What’s more, you can pin your project to a specific revision of
the nixpkgs repository. This ensures that every package Nix
installs will always be at the exact same version, regardless of
when or where the project is built. The environment is defined
in a simple plain-text file, and anyone using that file will get a
byte-for-byte identical environment, even on a different operat-
ing system.

2.2 Important Concepts

Before we start using Nix, it is important to spend some time
learning about some Nix-centric concepts, starting with the
derivation.

In Nix terminology, a derivation is a specification for running an
executable on precisely defined input files to repeatably produce
output files at uniquely determined file system paths.

In simpler terms, a derivation is a recipe with precisely defined
inputs, steps, and a fixed output. This means that given iden-
tical inputs and build steps, the exact same output will always
be produced. To achieve this level of reproducibility, several
important measures must be taken:

o All inputs to a derivation must be explicitly declared.

27

2 The Nix Package Manager

o Inputs include not just data files but also software depen-
dencies, configuration flags, and environment variables—
essentially, anything necessary for the build process.

e The build process takes place in a hermetic sandbox to
ensure the exact same output is always produced.

The next sections explain these three points in more detail.

2.2.1 Derivations
Here is an example of a simple Nix expression:

let
pkgs = import (fetchTarball
» "https://github.com/rstats-on-nix/nixpkgs/archive/2025-0:
o A}
in
pkgs.stdenv.mkDerivation {
name = "filtered mtcars";
buildInputs = [pkgs.gawk];
dontUnpack = true;
src = ./mtcars.csv;
installPhase = ''
mkdir -p $out
awk -F',' 'NR==1 || $9=="1" { print }' $src >
o $out/filtered.csv

M.
)

Without going into too much detail, this code uses awk, a com-
mon Unix data processing tool, to filter the mtcars.csv file.
As you can see, a significant amount of boilerplate is required

28

2.2 Important Concepts

for this simple operation. However, this approach is completely
reproducible: the dependencies are declared and pinned to a
specific version of the nixpkgs repository. The only thing that
could make this small pipeline fail is if the mtcars.csv file is
not provided to it.

Nix builds the filtered.csv in two steps: it first generates a
derivation from this expression, and only then does it build the
output. For clarity, I will refer to code like the example above as
a derivation rather than an expression, to avoid confusion with
the concept of an expression in R.

The goal of the tools we will use in this book, {rix} and
{rixpress} (or ryxpress if you prefer using Python), is to
help you create pipelines from such derivations without needing
to learn the Nix language itself, while still benefiting from its
powerful reproducibility features.

2.2.2 Dependencies of derivations

Nix requires that the dependencies of any derivation be explicitly
listed and managed by Nix itself. If you are building an output
that requires Quarto, then Quarto must be explicitly listed as
an input, even if you already have it installed on your system.
The same applies to Quarto’s dependencies, and their dependen-
cies, all the way down. To run a linear regression with R, you
essentially need Nix to build the entire universe of software that
R depends on first.

In Nix terms, this complete set of packages is what its author,
Eelco Dolstra, refers to as a component closure:

The idea is to always deploy component closures: if
we deploy a component, then we must also deploy its

29

2 The Nix Package Manager

dependencies, their dependencies, and so on. That
is, we must always deploy a set of components that
is closed under the ‘depends on’ relation.

(Niz: A Safe and Policy-Free System for Software Deployment,
Dolstra et al., 2004).

Figure 4 of Dolstra et al. (2004)

In the figure, subversion depends on openssl, which itself de-
pends on glibc. Similarly, if you write a derivation to filter
mtcars, it requires an input file, R, {dplyr}, and all of their
respective dependencies. All of these must be managed by Nix.
If any dependency exists “outside” this closure, the pipeline will
only work on your machine—defeating the purpose of repro-
ducibility.

2.2.3 The Nix store and hermetic builds

When building derivations, their outputs are saved into the Nix
store. Typically located at /nix/store/, this folder contains
all the software and build artefacts produced by Nix.

For example, the output of a derivation might be stored at a path

like /nix/store/81k4s9q652j1lka0c36khpscnmr8wk7 jb-mtcars_tail.
The long cryptographic hash uniquely identifies the build output

and is computed based on the content of the derivation and all

its inputs. This ensures that the build is fully reproducible.

As a result, building the same derivation on two different ma-
chines will yield the same cryptographic hash. You can sub-
stitute the built artefact with the derivation that generates it
one-to-one, just as in mathematics, where writing f(2) is the

same as writing 4 for the function f(x) := 2?2

30

2.2 Important Concepts

To guarantee that derivations always produce identical outputs,
builds must occur in an isolated environment known as a her-
metic sandbox. This process ensures that the build is unaf-
fected by external factors, such as the state of the host system.
This isolation extends to environment variables and even net-
work access. If you need to download data from an API, for
example, it will not work from within the build sandbox.

This may seem restrictive, but it makes perfect sense for repro-
ducibility. An API’s output can change over time. For a truly
reproducible result, you should obtain the data once, version it,
and use that archived data as an input to your analysis.

2.2.4 Other key Nix concepts

We’ve covered derivations, dependencies, closures, the Nix store,
and hermetic builds. That’s the core of what makes Nix tick.
But there are a few more concepts worth knowing about before
we move on:

o Purity: Nix tries very hard to keep builds “pure”: the out-
put only depends on what you explicitly list as inputs. If
a build script tries to reach out to the internet or read
some random file on your machine, Nix will block it. That
can feel restrictive at first, but it’s what guarantees repro-
ducibility.

e Binary caches: You don’t always need to build everything
yourself. Think back to the math analogy: if you already
know that f(2) = 4, there’s no need to compute it again—
you can just reuse the result. Nix does the same with
binary caches: every build is identified by a unique cryp-
tographic hash of its inputs. That means a prebuilt pack-
age fetched from cache.nixos.org (or your own cache) is

31

2 The Nix Package Manager

bit-for-bit identical to what you would have built locally.
This is why Nix is both reproducible and fast.

Garbage collection: Since Nix never overwrites anything
in the store, old packages can pile up.

Running nix-store --gc will run the garbage collector
to free up space.

Overlays: If you want to tweak a package or add your own
without forking all of nixpkgs, you can use overlays. They
let you extend or override existing definitions in a clean,
composable way.

Flakes: The newer way to define and pin Nix projects.
Flakes make it easier to share and reuse Nix setups across
machines and repositories.

Together, these features explain why Nix isn’t just another pack-
age manager. It’s more like a framework for reproducible envi-
ronments that can scale from a single project to an entire oper-
ating system (called NixOS?).

With these extra concepts in mind, we can now wrap up how
Nix ties everything together before moving on to installing it.

2.3 Caveats

While Nix is powerful, there are some limitations and practical
hurdles to be aware of if you plan to use it for actual work:

o Hardware acceleration: On non-NixOS systems, it can

be difficult to set up GPU acceleration (CUDA, ROCm,
OpenCL). Drivers are tightly coupled to the host kernel

https://nixos.org/

32

https://nixos.org/

2.3 Caveats

and libraries, while Nix builds aim for strict isolation. On
NixOS this integration is smoother, but on macOS or Win-
dows you may encounter limitations or extra manual steps.

« macOS-specific issues: Reproducibility is harder to achieve
on macOS (both Intel and Apple Silicon) than on Linux.
Nix packages often rely on Apple system frameworks (e.g.,
CoreFoundation, Security) that live outside the Nix store
and compromise hermetic builds®. The macOS sandbox is
also weaker than Linux’s and sometimes leaks system tools
like Xcode or Rosetta into builds*. Hydra cache coverage
is thinner for Darwin platforms, especially Apple Silicon,
so cache misses and local builds are much more common?®.
Finally, pinned environments can break after macOS or
Xcode updates because of changes in system libraries or
compiler flags®.

That said, in practice most packages build fine on ma-
cOS, and the ecosystem continues to improve. When re-
producibility problems do appear, the simplest fix is often
just to use another nearby nixpkgs revision for pinning
that is known to work. This makes the situation less frag-
ile than it might first appear. Another solution would be
to use Docker to deploy the Nix environment and use that
as a dev container. All of this will be discussed in detail
in this book.

o Steep learning curve: The Nix language and ecosystem
(flakes, overlays, derivations) can be conceptually difficult

3https://github.com /NixOS /nixpkgs/issues /67166
4https://discourse.nixos.org/t /nix-macos-sandbox-issues-in-nix-2-4-and-

later/17475
Shttps://www.reddit.com/r/NixOS/comments/17uxj6q/how_does_nix_package_n
Shttps://github.com/NixOS /nix/issues/11679

33

2 The Nix Package Manager

if you come from traditional package managers. Even ba-
sic customizations require some ramp-up time.

o Disk space and builds: Because Nix never mutates soft-
ware in place, the store can accumulate large amounts of
data. Cache misses sometimes force local builds, which
can be slow and resource-intensive. However, it is of course
possible to empty the Nix store to recover disk space, and
it is also possible to set up your own project cache if you
wish so. Setting up your own cache will also be something
that we will explore in this book.

These caveats don’t diminish Nix’s strengths but highlight that
its guarantees are strongest on Linux (and thus WSL), and es-
pecially on NixOS. On macOS, reproducibility is possible but
sometimes requires extra work, a bit of flexibility, and occasion-
ally picking a different nixpkgs snapshot.

2.4 In summary

Nix makes it possible to actually build software reproducibly. To
achieve this, it introduces several core concepts that are quite
specific, and definitely worth taking the time to understand.

Nix generates a derivation from a Nix expression through a pro-
cess called instantiation. During this process, Nix resolves all
inputs and computes a unique cryptographic hash from the con-
tents of the derivation and its entire dependency graph. This
ensures that even the smallest change results in a distinct deriva-
tion.

Once instantiated, the derivation is built in a hermetic environ-
ment where only explicitly declared dependencies are available.
If a pre-built binary is available through the official Nix cache

34

2.4 In summary

(or through another cache you might have added), it gets fetched
instead, since building it locally would have resulted in exactly
the same binary anyways. This makes the build entirely deter-
ministic. After a successful build, Nix stores the output in the
Nix store under a unique path determined by its hash. This
process is extremely precise: even changing from the comma to
the pipe as the separator in a CSV file will result in a different
hash for that file, and thus for all the build artifacts that depend
on it directly or indirectly.

There are however some caveats, such as hardware acceleration
being not necesseraly straightforward to configure, or builds that
are unfortunately not as reproducible as they could be on ma-
cOS. But for each of these issues, there are mitigations.

In the next chapter, we will learn how to install Nix, and
use {rix} to set up our first reproducible development
environments!

The key takeaway is that Nix is a complex tool because it solves
a complex problem: ensuring complete reproducibility across dif-
ferent environments and over time. Nix is a demanding mistress,
and adding it to your toolbox is not trivial. But the long-term
benefits far outweigh the costs. And with my packages {rix}
and {rixpress} (or ryxpress for Python), the entry ticket has
never been cheaper. You will be in a position to quickly benefit
from its power without having to master all its complexities.

35

3 Setting up Nix and
Positron

3.1 Introduction

Nix officially supports only macOS and Linux distributions.
Windows is technically supported via WSL2, since it runs a
Linux kernel underneath. Practically, this means you can treat
Linux distributions and Windows (via WSL2) as one system,
and macOS as a separate system.

If you plan to use Nix on Windows, WSL2 must be installed
and running first. An advantage of using WSL2 is isolation:
any existing tools you have installed on Windows such as R,
RStudio, Python, uv, etc., won’t interfere with Nix, allowing
you to use it freely.

On Linux and macOS, however, pre-installed tools can conflict
with Nix-managed tools. For example, environment managers
like uv or manually installed R/Python versions may interfere
with Nix environments. Ideally, you would let Nix manage
all your tools, but completely removing existing installations
of tools is often impractical especially if the machine you will be
using to follow along is also the machine you use for work.

But I do highly recommend setting up Nix to manage everything,
at least once you feel comfortable enough with Nix. However

37

3 Setting up Nix and Positron

if you're primarily an R user, you should be fine even with a
system-level R installation, and you could just set up Nix on
the same machine and there shouldn’t be any issue (if there are
it’ll only be when trying to use Nix, not when trying to use your
usual system-level installation of R).

Things can get more complicated with Python, especially if you
have auto-loading of environments in your IDE.

If you prefer a safe way to experiment with Nix, you can set
up a Linux virtual machine (but again, only if you are already
on Linux or macOS, and only if the machine you will be using
already has R or Python).

On macOS, you could use UTM! to set up such a machine. A
simple virtualization program for Linux is Gnome Boxes?. If
you use those, [recommend you then get the Lubuntu iso and
install Lubuntu. It’s a lightweight Ubuntu variant which is ideal
for VMs. Give the VM 4 GB of RAM, and 50 GB of disk space
to be safe.

You can then safely experiment in that machine without inter-
fering with your work computer!

3.2 Windows pre-requisites

If you are on Windows, you need the Windows Subsystem for
Linux 2 (WSL2) to run Nix. If you are on a recent version of

Windows 10 or 11, you can simply run this as an administrator
in PowerShell:

Thttps://mac.getutm.app/
Zhttps://apps.gnome.org/Boxes/

38

https://mac.getutm.app/
https://apps.gnome.org/Boxes/

3.2 Windows pre-requisites

wsl —--install

You can find further installation notes at this official Microsoft
documentation.

We recommend to activate systemd in Ubuntu WSL2, mainly
because this supports other users than root running Nix. To
set this up, please do as outlined in the official Microsoft WSL
documentation:

in WSL2 Ubuntu shell

sudo -i
nano /etc/wsl.conf

This will open the /etc/wsl.conf in a nano, a command line
text editor. Add the following line:

[boot]
systemd=true

Save the file with CTRL-O and then quit nano with CTRL-X.
Then, type the following line in powershell:

wsl —--shutdown

and then relaunch WSL (Ubuntu) from the start menu.

Then, you can follow the instructions for Linux.

39

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/systemd#how-to-enable-systemd
https://learn.microsoft.com/en-us/windows/wsl/systemd#how-to-enable-systemd

3 Setting up Nix and Positron

3.3 Determinate Nix

Installing (and uninstalling) Nix is quite simple, thanks to the
installer from Determinate Systems, a company that provides
services and tools built on Nix.

Do not use your operating system’s package manager to install
Nix. Instead, simply open a terminal and run the following line
(on Windows, if you cannot or have decided not to activate sys-
temd, then you have to append --init none to the command.
You can find more details about this on The Determinate Nix
Installer page):

curl --proto '=https' --tlsvl.2 -sSf \
-L https://install.determinate.systems/nix | \
sh -s -- install

This will install Nix in a matter of seconds! Restart the terminal
(WSL or native on Linux) and let’s try our installation of Nix
using so-called temporary shells.

3.4 Temporary shells

You now have Nix installed; before continuing, it let’s see if
everything works (close all your terminals and reopen them) by
dropping into a temporary shell with a tool you likely have not
installed on your machine.

Open a terminal and run:

40

https://determinate.systems/posts/determinate-nix-installer
https://github.com/DeterminateSystems/nix-installer
https://github.com/DeterminateSystems/nix-installer

3.4 Temporary shells

which sl

you will likely see something like this:

which: no sl in

now run this:

nix-shell -p sl

and then wait for Nix to do its magic. Then, run again:

which sl

this time you should see something like:

/nix/store/cndqpx74312xkrrgp842ifinkd4cg89g-s1-5.05/bin/sl

This is the path to the sl binary installed through Nix. The
path starts with /nix/store: the Nix store is where all the
software installed through Nix is stored.

Now type sl and see what happens!

You can find the list of available packages here.

41

https://search.nixos.org/packages?channel=unstable&from=0&size=50&sort=relevance&type=packages&query=

3 Setting up Nix and Positron
3.5 The rstats-on-nix Cache

Next, we install the cachix client and configure our
rstats-on-nix cache: this will install binary versions of
many R packages which will speed up the building process of
environments:

nix-env -iA cachix -f
- https://cachix.org/api/v1/install

then use the cache:

cachix use rstats-on-nix

You only need to do this once per machine you want to use {rix}
on. Many thanks to Cachix for sponsoring the rstats-on-nix
cache!

{rix} also includes a function called setup_cachix () which will
configure the cache but it is recommended to use the cachix
client instead. This is because setup_cachix() will not edit
the files that require admin/root privileges and only edit the
user-level files. This may not be enough depending on how you
installed Nix. Using the cachix client takes care of everything.
Use setup_cachix() when building a Docker image or if you
somehow mess up the configuration file (which should be located
in ~/.config/nix.conf).

On Linux, once Nix is installed, all the software that will be
installed through Nix will be saved to the /nix directory on the
root partition. It is common for Linux users to have a separate
partition for /, which may be small. Complete development
environments built with Nix can take up much space, so if the

42

https://www.cachix.org/

3.6 direnv

available space on your root partition is limited, we advise you
to mount the /nix folder on another partition with more space
(for example, a secondary hard drive). For this, edit /etc/fstab
and add the following line at the end:

/home/path_to/nix /nix none bind 0 0

This will map /nix to /home/path_to/nix which can be on a
larger partition. If you have enough space on your root partition,
you can ignore the above instructions.

3.6 direnv

direnv will automatically load Nix shells when you open a
project managed by Nix. This makes using Nix, especially with
an editor (which we will configure in the next section), much
more seamless and easy. If you're using Windows, install direnv
in WSL, just like Nix and cachix before. To install direnv run
this command:

nix-env -f '<nixpkgs>' -iA direnv

Then, we highly recommend to install the nix-direnv exten-
sion:

nix-env -f '<nixpkgs>' -iA nix-direnv

It is not mandatory to use nix-direnv if you already have
direnv, but it’ll make loading environments much faster and
seamless.

43

3 Setting up Nix and Positron

Finally, if you haven’t used direnv before, don’t forget this last
step to make your terminal detected and load direnv automati-
cally. On WSL, need to add eval "$(direnv hook bash)" to
a file called .bashrc, which you can find in your home/ direc-
tory (this is the directory that contains your user’s folder like
Downloads and so on). This file starts with a ., which means
it is hidden. You need top open it in an editor and add the
line right at the bottom. If you're comfortable with the termi-
nal, you can do it right from WSL, if not, you can navigate to
your WSL home directory from a Windows file explorer by typ-
ing \\wsl$ in the address bar, and then entering the ubuntu
directory. Inside, you'll see the home/ directory, and inside a
directory named after your username. This is where .bashrc
resides, and you can open it using Notepad.

On macOS, you need to add eval "$(direnv hook zsh) inside
of .zshrc instead.

3.7 Installing and configuring an editor

3.7.1 Positron and VS Code

For polyglot data science projects, the recommended editor is
Positron. Positron is a fork of VS Code tailored for data sci-
entists, with first-class support for both R and Python. It
makes it straightforward to select the correct interpreter for each
project, whether managed by Nix or another solution. Being
cross-platform, the same setup works on macOS, Windows, and
Linux. Since it is based on VS Code, switching from VS Code
to Positron is seamless.

44

https://direnv.net/docs/hook.html
https://direnv.net/docs/hook.html

3.7 Installing and configuring an editor

Personally, I use Emacs, but Positron is more accessible for most
users. If you prefer, you can also configure VS Code directly;
instructions are provided below.

Installing Positron:

o Download and install the installer for your operating sys-
tem.

o On Windows, even if Nix is installed under WSL, install
the Windows version of Positron. It can interact with
Nix on WSL via a plugin.

o In Positron, install the direnv extension?.

« On Windows, also install the Open Remote extension?.

Using VS Code instead of Positron:

« Add the REditorSupport extension®.
o Install the Python extension®.
o Add the {languageserver} R package to your projects as

well (we’ll see how in the next chapter).

3.7.2 Emacs

For Emacs, configuration is minimal:

o Install the direnv package.
o Add python and ess for R support.

3https://github.com /direnv /direnv-vscode

“https://open-vsx.org/extension/kv9898 /open-remote-wsl

Shttps://marketplace.visualstudio.com/items?itemName=REditorSupport.r

Shttps://marketplace.visualstudio.com /items?itemName=ms-
python.python

45

https://github.com/direnv/direnv-vscode
https://open-vsx.org/extension/kv9898/open-remote-wsl
https://marketplace.visualstudio.com/items?itemName=REditorSupport.r
https://marketplace.visualstudio.com/items?itemName=ms-python.python

3 Setting up Nix and Positron

With this setup, opening a Nix-managed project automatically
ensures Emacs uses the correct interpreter for that project (as-

suming we add an .envrc file to the project; more on this
later).

46

4 Reproducible
Development
Environments with rix

47

References

Peng, Roger D. 2011. “Reproducible Research in Computational
Science.” Science 334 (6060): 1226-27.

49

	Welcome!
	A modern, unified, and language-agnostic workflow for data science using Nix.

	Preface
	Introduction
	Who is this book for?
	What is the aim of this book?
	Prerequisites
	What actually is reproducibility?
	Using open-source tools is a hard requirement
	Hidden dependencies can hinder reproducibility
	The requirements of a RAP
	Are there different types of reproducibility?

	The Nix Package Manager
	Introduction
	Important Concepts
	Derivations
	Dependencies of derivations
	The Nix store and hermetic builds
	Other key Nix concepts

	Caveats
	In summary

	Setting up Nix and Positron
	Introduction
	Windows pre-requisites
	Determinate Nix
	Temporary shells
	The rstats-on-nix Cache
	direnv
	Installing and configuring an editor
	Positron and VS Code
	Emacs

	Reproducible Development Environments with rix
	References

